Syntheses of Intercalation Compounds of Layered Niobates with Methylviologen and Their Photochemical Behavior

Teruyuki Nakato, Kazuyuki Kuroda, and **Chuzo** Kato*

Department *of* Applied Chemistry, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo *169,*

Japan

Received July 9, *1991.* Revised Manuscript Received October *29, 1991*

Intercalation of methylviologen **(1,1'-dimethyl-4,4'-bipyridinium** ion) into two layered niobates $(K_4Nb_6O_{17}$ and *HNb30B)* and the photochemical behavior of the resulting compounds were inveatigated. *UV* irradiation of the intercalation compounds caused photoinduced electron transfer from the hosts to the guest; the formation of methylviologen radical cations was observed. This behavior was affected by the structure of the intercalation compounds. The radical cations were less stable in $HNb₃O₈$, where they were more densely packed, than in $\dot{K_4}Nb_6O_{17}$. Co-intercalation of photoinactive species with methylviologen significantly stabilized the radical cations in both of the hosts. The differences in the photochemistry apparently from structural differences.

Introduction

Layered niobates and titanates are invaluable host materials for intercalation chemistry because their interlayer spaces in conjunction with their semiconducting properties enable them to act **as** photocatalysts for water splitting.¹⁻³ In particular, potassium niobate $K_4Nb_6O_{17}$ **has** two types of alternating interlayers (interlayers I and *W.⁴* The layered structure of $K_4Nb_6O_{17}$ consists of stacked $[Nb_6O_{17}]^4$ - layers (Figure 1). In the interlayer I, K⁺ ions are present in "more open" cavities than those in the interlayer 11. Chemical reactivity of interlayer **K+** ions in the interlayers I and II should be different. In fact, K_4 - $Nb₆O₁₇$ shows specific intercalation and photocatalytic properties; each interlayer type exhibits a different intercalating capability.⁵ Overall photocatalytic water decomposition is achieved on the basis of the difference in the intercalating capability; two interlayers play different roles in the photocatalysis by loading of Ni or Pt which is intercalated only in the interlayer \tilde{I} .¹ Therefore, novel photofunctional intercalation compounds of these layered semiconductors can be produced by choosing suitable photo/electrofunctional guest species.

We have investigated the synthesis and the photochemistry of intercalation compounds formed between several layered niobates and titanates $(K_4Nb_6O_{17}, HTi-$ NbO₅, and H₂Ti₄O₉) and methylviologen (MV^{2+}) . The photoinduced electron transfer from the hosts to the guest within these intercalation compounds has been observed.⁶ The photochemistry of these solid systems has been characterized by the stability of methylviologen radical cations (MV⁺⁺) which form as the result of photoinduced host-guest electron transfer. Moreover, their stability **has** differed with the structure of the intercalation compounds.^{6d} In the MV²⁺-K_xNb₆O₁₇ intercalation compound, MV2+ was present only in the interlayer I. With this distribution of the guest species, MV'+ is stabilized probably by a restricted back reaction. In the $MV^{2+}-H$, TiNbO₅, MV^{2+} was more densely packed than in the other intercalation compounds. It is inclined to $[TiNbO₅]⁻$ layers and is less stable than in the other compounds.

Such a relationship between the photochemical behavior and the structures of the intercalation compounds is important. To spatially organize each chemical component to facilitate total photochemical reactions is important in the synthesis of novel photofunctional materials by intercalation reactions. However, only few studies have fo*cused* on the structural control of photochemical properties of intercalation compounds. Also in the $MV^{\tilde{2}+}$ -layered semiconductors, further investigations using other related hosts is necessary to clarify the host-guest interactions in detail.

On the other hand, modification of the interlayer spaces by co-intercalation of other species should be regarded **as** a useful method to assist photoinduced energy/electron transfer in intercalation compounds. *An* electron-transport chain composed of three components **has** been organized at a molecular level in a zeolite matrix.⁷ Thus, investigations aimed at altering the photochemical properties of MV2+-niobate/titanate intercalation compounds by cointercalation of other guests was **also** indicated.

In the present study we have used two layered niobates, $K_4Nb_6O_{17}$ and HNb_3O_8 , as hosts to form MV^{2+} intercalates. HNb308 has only one type of the interlayer (Figure **2).** Two intercalation compounds of $K_4Nb_6O_{17}$ with MV^{2+} were synthesized; K⁺ ions were co-intercalated with MV²⁺ in one compound and $K⁺$ ions were almost removed in the other. Two types of $MV^{2+}-H_rNb_3O_8$ intercalation compounds were also prepared; one compound contained npropylammonium ions (PA^+) with MV^{2+} and the other only contained MV2+. The photochemical behavior of these intercalation compounds was investigated, and *Mv'+* **was** found to be extremely well stabilized by the cointercalation of **K+** or PA+. The results show that modification of interlayer spaces by co-intercalation of photoinactive guests alters the interlayer environment so

⁽¹⁾ (a) Domen, K.; Kudo, A.; Shinozaki, A.; Tanaka, A.; Maruya, K.; Onishi, T. J. *Chem. Soc., Chem. Commun.* **1986, 356.** (b) Domen, K.; Umism, 1. J. Chem. Soc., Chem. Commun. 1966, 300. (b) Domen, K.;
Kudo, A.; Shibata, M.; Tanaka, A.; Maruya, K.; Onishi, T. J. Chem. Soc.,
Chem. Commun. 1986, 1706. (c) Kudo, A.; Tanaka, A.; Domen, K.;
Maruya, K.; Aika, K.; **95.** - -, **1846.** - - - -. **(2) Shibata,** M.; Kudo, A.; Tanaka, A.; Domen, K.; Maruya, K.; **Oniahi,**

T. *Chem. Lett.* **1987,1017.**

⁽³⁾ Domen, K.; Yoshimura, J.; Sekine, T.; Tanaka, **A; Onishi,** T. *Catal. Lett.* **1990,4, 339.**

^{1982,43,346.} (4) Gasperin, M.; Le Bihan, M.-T. J. *Solid State Chem.* **1980,33,83;**

⁽⁵⁾ Kinomura, **N.;** Kumada, N.; Muto, **F.** J. *Chem. SOC., Dalton* 2'". **1985, 2349.**

^{(6) (}a) Miyata, H.; Sugahara, Y.; Kuroda, K.; Kato, C. J. Chem. Soc., Faraday Trans. 1 1988, 84, 2677. (b) Nakato, T.; Miyata, H.; Kuroda, K.; Kato, C. React. Solids 1988, 6, 231. (c) Nakato, T.; Kuroda, K.; Kato, C. J. C

⁽⁷⁾ Peraaud, L.; Bard, A. J.; Campion, A.; **Fox,** M. A.; **Mallouk,** T. E.; Webber, **S.** E.; White, J. M. J. *Am. Chem. SOC.* **1987,109, 7309.**

x=1/4 (*0*) : **x=3/4** ().

Figure 1. Structure of $K_4Nb_6O_{17}$.3H₂O showing the two the interlayer spaces.'

changing the photochemical behavior of the intercalation compounds.

Experimental Section

Materials. $K_4Nb_6O_{17}$ and HNb_3O_8 were prepared by the methods reported previously.^{8,9} $K_4Nb_6O_{17}$.3H₂O was obtained by heating a 2.1:3.0 molar mixture of $\mathrm{K_{2}CO_{3}}$ (Kokusan Kagaku Co.) and Nb_2O_5 (Wako Pure Chemical Ind. Co.) at 1100 °C for 10 h. KNb₃O₈ was prepared by heating of a mixture of K_2CO_3 and Nb_2O_5 (2.1:1.0) under the same conditions. HN b_3O_8 with 6.5 N HNO₃. These oxide products were identified by XRD and **ICP** analyses. The acid treatment of $KNb₃O₈$ was shown by inductively coupled plasma emission spectroscopy (ICP) to remove **97%** of K+ ions. Commercially available methylviologen dichloride (Tokyo Kasei Co.) was used without further purification.

Syntheses of the Intercalation Compounds. Intercalation of $K_4Nb_6O_{17}$ by MV^{2+} was carried out by direct reaction. K_4 -**Nb@l,** was reacted with an excess of **MV+** in an aqueous solution $(1.0 \text{ mol dm}^{-3})$ in a glass ampule at 60 °C. By using different reaction times, two different samples were obtained; one was prepared by a 3-week reaction and the other by repeating the reaction for 2 weeks three times **(total** 6 weeks).

Two $MV^{2+}-H_xNb_3O_8$ intercalation compounds were obtained by different procedures. One was the guest-exchange method previously used to obtain the intercalation compounds of $H_2Ti_4O_9$ and HTiNbO₅ with MV^{2+6a,b} HNb₃O₈·H₂O was sealed in a glass ampule containing an excess of 50% *n*-propylamine aqueous solution and allowed to stand for 1 week at 60 °C. The product was washed with acetone and dried under ambient conditions. Powder X-ray diffraction (XRD) and infrared spectroscopy (IR) analyses confirmed that an *n*-propylammonium (PA^+) – $H_xNb_3O_8$

Figure 3. XRD patterns of (a) $K_ANb_6O_{17} \cdot 3H_2O$ and (b) $MV^{2+}-K_xNb_6O_{17}$ intercalation compound kept under ambient conditions (obtained by the reaction for 3 weeks).

intercalation compound had been formed.¹⁰ The d_{020} spacing of the intercalation compound was 1.48 nm, being close to the value reported previously (1.466 nm). The PA⁺-intercalate was then allowed to react at 110 °C with an excess amount of a 0.2 mol dm⁻³ MV²⁺ aqueous solution in a sealed Teflon bottle for 2 weeks. By the other method, $HNb₃O₈$ was intercalated with $MV²⁺$ by using a direct reaction. Such a method had not been successful with $H_2Ti_4O_9$ or HTiNbO₅. The reaction was carried out by heating a mixture of $\mathrm{HNb_{3}O_{8}H_{2}O}$ and an excess amount of a MV²⁺ aqueous solution (0.2 mol dm⁻³) in a sealed Teflon bottle at 110 °C for 2 weeks. All the products were thoroughly washed with methanol and dried under ambient conditions.

Analyses. All samples were characterized by XRD and IR. XRD patterns were obtained from Rigaku RADI-C (Ni-filtered Cu K α radiation) and Rigaku RADII-A (Mn-filtered Fe K α radiation) diffractometers. Powdered samples (<100 mesh) for XRD
were used without any techniques to orient them. IR spectra were
recorded on a Perkin-Elmer FTIR-1640 spectrometer (KBr disk technique). The composition of the samples was determined by ICP (Nippon Jarrell Ash ICAP-575-II) and conventional elemental (C, H, N) analyses.

Observation of Photochemical Behavior. The photochemical behavior of the MV^{2+} intercalates was observed spectroscopically. The intercalation compounds were dispersed into methanol and dropped onto inside window of a glass cell for visible spectroscopy. The cell coated with the powdered samples was irradiated by a 100-W super-high-pressure mercury lamp (Ushio USH-102D) and purged with oxygen, air, or argon. We did not estimate the thickness and uniformity of the coated samples. The absorption spectra of the samples in the visible region were measured by diffuse reflectance using either a Hitachi U-3200 or a Shimadzu W-21OA spectrometer equipped with integrating spheres.

Results and Discussion

Syntheses of $MV^{2+}-K_xNb_6O_{17}$ **Intercalation Compounds.** The XRD patterns, **shown** in Figure 3, indicated that the interlayer structure of $K_4Nb_6O_{17}$ was changed by the reaction with *MV2+* because the relative intensities of the **(020) and** the (040) peaks altered. The relative in-

⁽⁸⁾ Naseau, K.; Shiever, J. W.; Berstein, J. L. *J. Electrochem. SOC.* **1969,** *116,* **349.**

⁽⁹⁾ Nedjar, R.; Borel, M. M.; Raveau, B. *Mater. Res. Bull.* **1985,20, 1291.**

⁽¹⁰⁾ Nedjar, R.; Borel, M. M.; Ravenu, B. 2. *Anorg. Allg. Chem.* **1986,** *5401541,* **198.**

Table I. Basal Spacings of the Samples

sample	basal spacing/nm	$\Delta d / \text{nm}$
$K_4Nb_6O_{17}$ (anhyd)	1.64	
$MV-K_2Nb_6O_{17}^a$	2.05	0.41
$MV/K-K_2Nb_6O_{17}b$	2.07	0.43
$HNb3O8$ (anhyd)	0.93	
$MV-HNb3O8c$	1.42	0.49
$MV/PA-HNb3O8d$	1.47	0.54

 α MV²⁺-K₂Nb₆O₁₇ intercalation compound obtained by three times of the treatment for 2 weeks. b MV²⁺-K₂Nb₆O₁₇ intercalation compound obtained by the reaction for **3** weeks. $MV^{2+}-H_xNb_3O_8$ intercalation compound obtained by the direct reaction. " $MV^{2+}-H_xNb_3O_8$ intercalation compound obtained by the guest-exchange reaction.

Table II. Composition of the Intercalation Compounds

MV/mol	K or PA/mol	Nb/mol	
0.4	2.1	6.0	
0.3	2.7	6.0	
0.3		3.0	
0.2	0.3	3.0	

those in Table I. "Abbreviations of the intercalation compounds are the same **as**

tensities of these two **peaks** reflect a difference in the X-ray scattering by the interlayers I and 11. For example, in $K_4Nb_6O_{17}$ (anhydrous), the two interlayers are indistinguishable from each other, so the (020) diffraction peak does not occur.⁸ In the XRD pattern of $K_4Nb_6O_{17}$ ³H₂O, the usual hydration state under ambient conditions, the (020) peak appears with a low intensity because water molecules are intercalated only into the interlayer I (Figure 3a).8 But, if the difference between the interlayers becomes large, e.g. by intercalation of a bulky guest species only into the interlayer I, the intensity of the (020) peak would be larger that that of the (040) peak. In the XRD pattern of the reaction products formed between MV^{2+} and K_4Nb_6 -**017,** the (020) peak is strong, indicating a large difference between the two interlayers (Figure 3b, the two products with the different reaction time showed similar XRD patterns). Thus, the exchange of K^+ by MV^{2+} should occur only in the interlayer I.

Table I shows the basal spacings of the samples and the Δd values (increase in the basal spacing following intercalation). These values were obtained after dehydration of the samples at 60 **"C** under reduced pressure, whereas Figure 3b shows the XRD pattern of the product kept under ambient conditions. The d_{020} values, corresponding to the sum of the two interlayer spacings, were adopted **as** the basal spacings. On the other hand, it was a problem that what spacing should be subtracted from the basal spacing of the products. The b parameter of $K_4Nb_6O_{17}$ (anhydrous) is the same as that of $Rb_4Nb_6O_{17}$ (anhydrous) although the ionic radius of **K+** is smaller than that of $Rb^{+.4}$ Therefore, the basal spacing of $K_4Nb_6O_{17}$ (anhydrous) $(d_{020} = 1.64 \text{ nm})$ should reflect the narrowest interlayer spacing, and we adopted this value.

The composition of the intercalation compounds is shown in Table II. Since the negative charge of a Since the negative charge of a $[Nb_6O_{17}]^4$ - layer is not completely balanced by K⁺ and *W2+* ions, protons (or oxonium ions) may **also** be present in the interlayers. In the intercalation compound obtained by the three repeated 2-week reaction, half the K+ ions remained. **Thus,** the reaction product incorporated *MV2+* only in the interlayer I, where almost **all** the K+ ions were removed. On the other hand, the intercalation compound formed during the 3-week reaction period had a larger amount of K^+ than in the product given by three repeated 2-week reaction. Therefore, this intercalation compound

Figure **4.** Schematic representation of the interlayer structure of (a) $MV-K_2Nb_6O_{17}$ and (b) $MV/K-K_2Nb_6O_{17}$.

Figure 5. Possible conformations of MV^{2+} ions (a) with keying into the cavity provided by $[Nb_6O_{17}]^4$ layers and (b) inclined with respect to the layers without keying in the interlayer of $K_4Nb_6O_{17}$.

contained $K⁺$ ions not only in the interlayer II but because of incomplete exchange of K^+ also in the interlayer I. Namely, K^+ ions were co-intercalated with MV^{2+} in the interlayer I. Thus we designate the intercalation compound obtained by three times the treatment for 2 weeks as $MV-K_2Nb_6O_{17}$ and the intercalation compound given by the 3-week reaction as $MV/K-K_2Nb_6O_{17}$. The interlayer structure of these two intercalaction compounds are illustrated in Figure 4.

The arrangement of MV^{2+} is inferred from the basal spacings. Intercalation of a flat monolayer of MV^{2+} was reported to increase the basal spacings of clay minerals and $MPS₃$ (M = Mn, Cd, and Fe) by 0.28-0.33 nm.¹¹ If $K_4Nb_6O_{17}$ intercalated MV^{2+} into both of its interlayers, the Δd value would be larger than ca. 0.6 nm. Although $[Nb_6O_{17}]^{4-}$ layers are not flat and have cavities accommodating K^+ ions in the interlayer I, bulky MV^{2+} ions (0.63) nm \times 1.34 nm \times 0.3 nm)^{11b} cannot be oriented to give a smaller Δd value than 0.3 nm even if they keyed into the cavities as shown in Figure 5a. Therefore, the Δd values in Table I reveal that *MV2+* was intercalated into only one interlayer, agreeing with the intensity ordering of the (020) and the (040) peaks. The values also indicate that the arrangement of *MV2+* ions are not flat with respect to the

⁽¹¹⁾ (a) Hayes, M. H. B.; Pick, M. E.; Toms, **B.** *k J. Colloid Interface Sci. 1978,65, 254.* **(b)** Raupach, M.; Emerson, **W. W.;** Slade, P. G. J. *Colloid Interface Sci. 1979,69,* **398.** (c) Poizat, 0.; Sourisseau, C.; Mathey, M. M. J. *Chem. SOC., Faraday Trans. l 1984,80,3257.*

Syntheses of Intercalation Compounds Chem. Mater., Vol. 4, No. 1, 1992 131

layers. Possible conformations are represented in Figure 5. Twist of two pyridyl rings of MV^{2+} with respect to each other is also possible (Figure **5b).**

The compositions of the intercalation compounds agree with this assumption. The area of the $[Nb_6O_{17}]^{4-}$ layer surface per charge is calculated as 0.126 nm^{2,4} and the area of a molecular plane of MV^{2+} is estimated as 0.734 nm^{2,11b} If MV2+ is recognized **as** a rectangular shape, the area is calculated as 0.63 nm \times 1.34 nm = 0.844 nm^{2.11b} Thus, the maximum amount of MV^{2+} which can be intercalated as a flat monolayer in the interlayer I is estimated as 0.34
mol of MV^{2+} per $[Nb_6O_{17}]^{4-}$. Therefore, MV^{2+} cannot be
 TV^{2+} cannot be arranged in flat monolayer in $MV-K_2Nb_6O_{17}$. MV^{2+} ions should be inclined to reduce their projected area to **0.63** nm^2 because the amount of MV^{2+} is 0.4 mol per $[Nb_6O_{17}]^4$. The tilt angle of MV^{2+} is calculated as 43° from the Δd value when its **0.63-nm** side is inclined, and then the projected area of MV2+ is calculated as **0.62** nm2 for the rectangular shape of MV2+. If the size of methyl groups of MV2+ is accurately estimated, the value becomes **0.54 nm2.** The former value **agrees** with the required projected area. These results lead to the conclusion that the surface of $[\mathrm{Nb_6O_{17}}]^4$ layers is almost covered with closely packed *MV2+* except the neighborhood of its methyl groups. On the other hand, the amount of MV^{2+} in $MV/K-K_2Nb_6O_{17}$ reveals that MV2+ can be accommodated flat. However, $MV²⁺$ is supposed to be inclined by taking into account co-intercalated K+ ions.

Synthesis of $MV^{2+}-H_xNb_3O_8$ Intercalation Compounds. Intercalation of MV^2 ⁺ was confirmed by XRD and IR. Since $HNb₃O₈$ contains only one type of interlayer, its XRD patterns can be easily interpreted. The XRD patterns of the intercalation products indicated that the basal spacings $(d_{020}$ values) had increased from 0.93 nm for $HNb₃O₈$ (anhydrous) as shown in Table I. The Δd values were obtained on the basis of the basal spacing of $HNb₃O₈$ (anhydrous) which reflects the lowest interlayer spacing of the $HNb₃O₈$ system. In addition, many absorption bands due to MV^{2+} were observed in the IR spectra of both the samples.

On the other hand, the basal spacing of the guest exchanged product was close to that of the PA^+ – $H_rNb_3O_8$ intercalation compound **(1.48** nm). The **(020)** peak of the product had a symmetrical shape, in accord the compound having a homogeneous composition. Therefore, we assume that PA^+ remains after the reaction of the PA^+ – $H_rNb_3O_8$ intercalation compound with MV2+. IR and elemental analyses supported this assumption. In the IR spectrum, absorption bands for PA+ were observed in addition to those for *MV2+.* The C:N atomic ratio of the sample was **4.51,** which was an intermediate value between the ratios of PA⁺ (3:1) and MV²⁺ (6:1). Therefore, we conclude that $PA⁺$ is co-intercalated with $MV²⁺$ in this intercalation compound. We designate the intercalation compound obtained by the direct reaction and the guest exchanged product as $MV-HNb₃O₈$ and $MV/PA-HNb₃O₈$, respectively.

The arrangement of MV^{2+} in $HNb₃O₈$ was deduced from the intercalate's basal spacings and the composition. Table I1 lists the composition of the intercalation compounds. The organic contents of $MV/PA-HNb₃O₈$ were divided into the amounts of PA⁺ and MV²⁺ on the basis of the C:N ratio. The Δd values were larger than those for $MV^{2+}-K_2Nb_6O_{17}$ intercalation compounds, indicative of inclined arrangements for MV^{2+} . Although $[Nb_3O_8]$ ⁻ layers have small cavities, MV^{2+} cannot be keyed into the cavities as in the case of the $MV^{2+}-K_4Nb_6O_{17}$ system. Bilayer arrangements are not possible because the **Ad** values are

Figure 6. Schematic representation of the interlayer structure of (a) $MV-HNb₃O₈$ and (b) $MV/PA-HNb₃O₈$.

Table 111. Half-Lives of MV'+ in Various Intercalation Compounds

	in oxygen	in air	in argon
$MV-K_2Nb_6O_{17}^a$	15 min	45 min	2 _h
$MV/K-K_2Nb_6O_{17}$	2 _h	6 h	
$MV-HNb3O8$	3 min	4 min	10 min
$MV/PA-HNb3O8$	1 h	4 h	
$MV^{2+}-H_{\star}TiNbO_{5}^{\ a}$	3 min	4 min	20 min
^ª Reference 6d.			

too small. The area of $[Nb_3O_8]$ ⁻ layer surface per one charge is calculated as 0.171 nm².⁹ Hence, the amount of MV^{2+} (0.734 nm²) must be below 0.23 mol per $[Nb_3O_8]$ ⁻ if the arrangement is a flat monolayer. If $HNb₃O₈$ contains 0.3 mol of MV^{2+} per $[\text{Nb}_3\text{O}_8]^-$ as it does in $\text{MV-HNb}_3\text{O}_8$, the projected area of $MV^{\check{2}+}$ onto the layer surface must be smaller than **0.57** nm2. On the other hand, the tilt angle of *MV2+* molecular plane to the host layer is calculated **as 51'** when **0.63** nm side **of** the rectangle is inclined. In this situation, the projected area of MV^2 ⁺ is estimated as 0.53 nm^2 for rectangular MV^{2+} . It is also estimated as 0.46 nm^2 if the size of methyl groups of MV^{2+} is accurately estimated. These values are smaller than the maximum projected area. The fraction of the $[Nb_3O_8]$ ⁻ layer surface covered by MV^{2+} is estimated as 80% .

For $MV/PA-HNb₃O₈$ the basal spacing was close to that of the PA+-HxNb308 intercalation compound **as** described above. This indicates that the arrangement of PA⁺ was not greatly altered by the reaction with MV^{2+} . Since PA⁺ ions are arranged transversally in the PA^+ -H_xNb₃O₈ intercalation compound, they can be regarded **as** "pillars" in $MV/PA-HNb₃O₈$. Therefore, we deduce that $MV²⁺$ is present among the pillars of PA^+ in $MV/PA-HNb_3O_8$. The interlayer structure of these intercalation compounds is represented in Figure **6** schematically.

Photochemical Behavior of $MV^{2+}-K_xNb_6O_{17}$ Inter**calation Compounds.** We have already reported the photochemical behavior of $MV-K_2Nb_6O_{17}$; electron transfer occurred from the $[Nb_6O_{17}]^{4-}$ layers to the intercalated MV2+ when the intercalation compound was irradiated by UV.^{6d} The photochemical behavior was characterized by high stability of MV'+ which formed **as** the result of the photoinduced electron transfer. MV^{**} was highly stabilized in $K_4Nb_6O_{17}$ as compared with it in $H_2Ti_4O_9$ and $HTiNbO_5$.

In the present study, we found that the stability of *Mv'+* was markedly enhanced in $MV/K-K_2Nb_6O_{17}$. Table III compares the stability of $MV⁺$ in various intercalation compounds. The half-lives were determined by the decay of the optical density at **620** nm, the characteristic absorption band of MV^{*+}, as measured by diffuse reflectance spectroscopy. The photochemical behavior of intercalated *MV+* is only significantly affected by co-intercalated small

Figure 7. Visible diffuse reflectance spectra after UV irradiation of (a) $MV/PA-HNb₃O₈$ and (b) $MV-HNb₃O₈$. These spectra were measured in air after 2 min of irradiation.

photoinactive ions such **as** K+. Co-intercalation however had little effect upon the arrangement. This indicates that there are some guest-guest interactions in the photochemical reaction of the intercalation compounds in addition to host-guest interactions. Co-intercalation of K+ should alter the guest-guest interactions. On the other hand, we could not observe obvious differences in the intensity of the absorption band of *MV+* between the two intercalation compounds both of which contained similar amount of MV^{2+} . This indicates that there are no significant differences in the photostationary states of the intercalation compounds, and we presume that co-intercalation of K⁺ ions influences only the back reaction $(MV^+$ + h⁺ \rightarrow MV²⁺).

Photochemical Behavior of $MV^{2+}-H_xNb_3O_8$ Intercalation Compounds. Both $MV-HNb₃O₈$ and $MV/PA-$ HNb308 exhibited a blue color by UV irradiation, **as** do the other compounds of layered niobate and titanate intercalated with MV2+. Figure **7** shows the visible diffuse reflectance spectra of $\rm MV^{2+}\text{--}H_{x}Nb_{3}O_{8}$ intercalation compounds after the irradiation. They are typical spectra of MV+ monomers.12 Thus the spectra confirmed that on UV irradiation $\mathrm{HNb_{3}O_{8}}$ donated electrons to intercalated **MV2+ as** do the other layered niobates and titanates.

However, the absorption intensity due to MV⁺⁺ apparently is lower in $MV-HNb₃O₈$ than that in $MV/PA HNb₃O₈$, and the stability of $\overline{M}V^{*+}$ was also much lower in $MV-HNb₃O₈$ than in $MV/PA-HNb₃O₈$. The stability is summarized in Table 111. The decaying behavior of MV^+ in $MV-HNb_3O_8$ is comparable to that in the $MV^{2+}-H_{x}TiNbO_{5}$ intercalation compound, being characterized by unstable *MV+* even under an argon flow. This similarity should be related to the structural resemblance of the two intercalation compounds. Both compounds contain rather large amounts of *MV2+* with the guest ions are arranged so that their molecular planes are inclined to the host layer. Such inclined orientations of MV2+ reduce the distance between adjacent *MV2+* sites and en-

able the bipyridine rings to partially face one another. Therefore, we suppose that electron hopping occurs between adjacent *MV2+* sites and then *MV+* decays faster. The lower absorption intensity of $MV-HNb₃O₈$ than that of MV/PA-HNb308 *can* **also** be explained by guest-guest interactions; total efficiency of the photoreduction may be decreased through prompt decay of *MV+* by interactions with neighboring MV2+. On the other hand, since the diffuse refledance spectrum showed only the presence of *MV+* monomers, the interactions did not cause dimerization of *MV+,* **as** observed in electrochemical reduction of MV^{2+} in montmorillonite.¹³ Electrostatic interactions between $[Nb_3O_8]$ ⁻ layers and MV^{2+} should restrict conformational changes by the photochemical reaction.

On the other hand, MV^+ formed in $MV/PA-HNb_3O_8$ was much more stable than that in $MV-HNb₃O₈$. The stability was comparable to that in $MV/K-K_2Nb_6O_{17}$. In $MV/PA-HNb₃O₈$, $MV²⁺$ is regarded as diluted by $PA⁺$ although the inclined conformation of MV2+ itself to the host layer is similar to that in $MV^{2+}-H_xNb_3O_8$. PA⁺ can not be considered **as** playing an essential role, e.g., act **as** donor or acceptor in the reaction, in the host-guest electron
transfer. In addition, *n*-propylamine (not propyl-In addition, n -propylamine (not propyl**ammonium),** which *can* act **as an** electron donor, is scarcely present **as** it is removed during the washing of the PA^+ -H_xNb₃O₈ intercalate and the following reaction with MV2+. Therefore, we suppose that the electron hopping between adjacent MV^{2+} sites is restricted by PA^+ pillars. Namely, *MV-MV* interactions which make *MV+* unstable are restrained by PA⁺ ions which are present among MV²⁺. The role of PA+ is essentially the same **as** that of K+ in $MV/K-K_2Nb_6O_{17}$. The slow decay of MV^{*+} in $MV/K K_2Nb_6O_{17}$ also reflects the inability of photoinactive K^+ to interfere with MV-MV interactions.

Conclusion

We demonstrated that the photochemistry of intercalation compounds formed between the layered niobates $K_4Nb_6O_{17}$ and HNb_3O_8 with MV^{2+} can be controlled by changing the interlayer structures in these compounds. **Two** types of intercalation compounds were prepared for each host; one type contained only MV^{2+} in their interlayers and the other co-intercalated photoinactive species with MV^{2+} . All the intercalation compounds formed MV^{++} in the interlayers by photoinduced host-guest electron transfer. The presence of co-intercalated species significantly affected the decay of MV⁺⁺. This difference was explained by guest-guest interactions which varied with the co-intercalation of photoinactive guests. The results have shown that the modification of photochemical properties can be effected by introducing various guest species into two-dimensional spaces. The concept is of importance to the design of highly organized photochemical systems based on layered matrices.

Acknowledgment. We thank Masato Nakade and Kazuhiko Kusunoki for their help in analyses of the samples.

Registry No. MVCl₂, 1910-42-5; PA, 107-10-8; MV⁺⁺, $25239-55-8$; $K_4Nb_6O_{17}$, 12142-45-9; HNb_3O_8 , 67724-84-9; K_2CO_3 , 584-08-7; Nb₂O₅, 1313-96-8.

⁽¹²⁾ Kwower, E. M.; Cotter, J. L. *J. Am. Chem. SOC.* **1964,86, 5524. (13) White,** J. **R.; Bard, A.** J. *J. Electroanal. Chem.* **1987,** *197,* **233.**